NUMERICAL SIMULATION OF TURBULENT GAS FLOW WITH COMBUSTION REACTIONS

Authors

  • M.M. Hamdamov Institute of Mechanics and Seismic Stability of Structures of the Academy of Sciences of the Republic of Uzbekistan
  • Z.Z. Shirinov Institute of Mechanics and Seismic Stability of Structures of the Academy of Sciences of the Republic of Uzbekistan

Keywords:

mathematical model, turbulent jet, chemical reaction rate, total enthalpy, Arrhenius law, finite differences, numerical algorithm, computational experiment, combustion processes, turbulent model, Zeldovich function, chemical reaction, mass, velocity, temperature

Abstract

In this work, numerical methods are given for solving the problems of distribution and combustion of methane and an oxidizer a finite velocity in a turbulent flow. In the mathematical modeling of the jet flow, the full equations of the turbulent boundary composition of a multicomponent reacting gas are used. The process of one-stage irreversible combustion is described by the Arrhenius model with constants extracted in the work of C.A.Frolov and recorded. The flow turbulence is described by Sekundov  equations. Methane is considered as a fuel, air was supplied with a co-current flow. The number of component conservation equations has been reduced with the use of ordinary and reduced Schwab-Zel'dovich functions. Numerical calculations were carried out in dimensionless Mises variables. The used implicit finite-difference scheme provided the second order of approximation accuracy in longitudinal and transverse coordinates. Due to the nonlinearity of the differential equations of substance conservation, internal (in terms of speed) and external (in terms of other indicators) iterative processes were organized. Some results of the computational experiment are presented. The calculation results for the temperature change on the flow axis are compared with the experimental data.

References

Baev V.K., Golovichev V.K., Tretyakova P.K. Gorenie v sverxzvukovom potoke. Novosibirsk: Nauka, 1984. 304 s

Kondratev L.V., Medvedev S.V. Primenenie dvuxparametricheskoy modeli turbulentnosti dlya rascheta struynix techeniy//fiziko-ximicheskie prosessi v energeticheskix ustanovkax. Minsk, 1983, S. 16-19.

Ievlev V.M. Turbulentnie dvijeniya visokotemperaturnix sploshnix Sred. M.: Nauka, 1975, 256 s

Shvab A.B. Svyaz mezhdu temperaturnymi i skorostnymi polyami gazovogo fakela // V sb. Issledovanie protsessov goreniya naturalnogo topliva. Pod red. G.F.Knorre. Gosenergoizdat, 1948.

Vulis L.A., Yarin L.P. Aerodinamika fakela. L.: Energiya, 1978, 216 s.

Abramovich G.N. Teoriya turbulentnix struy. M.: 1984. 715 s.

Artyux L.Yu., Kashkarov V.P., Tishkanbaeva M.B. Ob Effekte laminarizasii diffuzionnogo turbulentnogo fakela//Chislennie metodi resheniya zadach matematicheskoy fiziki. Alma-ata, 1983, s. 28-35.

Bush William B., Fink Stantion F. On Diffusion Flames in Turbulent Comeumption in a Circular Fuel Shear Flows: Modelling Reactant Comsumption in a Circular Fuel Jets //AIAA Journal, 1981, 19, H 3, pp. 372 – 379.

Libby P.А., Williams P.A. Soma. Omplication of Recent heoretical Studies in Turbulent Combustion //AIAA J., 1981, 19, № 3, PP. 261 - 274»

Haji H. The Prediction of Turbulent Swirling Jet Flow //Int. J. Heat and Mass Transfer, 1986, 29, R 2, pp. 169 - 182.

Timoshenko V.I. Matematicheskoe modelirovanie turbulentnix ximicheski-reagiruyutshix techeniy gazovix i dvuxfaznix smesey v struyax i kanalax // Texnicheskaya mexanika. – 2013. – № 4. – S. 123-136.

Tuxvatullina R.R., Ivanov V.S., Frolov S.M., Basara B. Modelirovanie turbulentnogo reagiruyutshego techeniya metodom krupnix vixrey, sovmetshennim s metodom Monte-Karlo dlya rascheta podsetochnix napryajeniy // Gorenie i vzriv. 2018. T. 11. – №2. – S. 66-75.

Nora Boukhalfa. Chemical Kinetic Modeling of Methane Combustion // Procedia Engineering. Vol. 148. 2016. –pp. 1130-1136.

Kozubkova M., Krutil Ya., Nevrliy V. Eksperimentalnoe issledovanie i chislennoe modelirovanie goreniya metana v oblastyax so slojnoy geometriey // Fizika goreniya i vzriva, 2014, t. 50, N◦4. - S. 8-14.

Ivanova A.N., Karnaux A.A. Predeli vosplameneniya dlya okisleniya metana v Parax vodi // Institut problem ximicheskoy fiziki ran. VIP. II Chernogolovka, 2016. – C. 125-127

Khujaev I. K., Hamdamov M. M. Abdusattorov S. Sh. A numerical method for solving the problem of an axisymmetric turbulent jet of propane-butane mixture under diffusion combustion // Problems of Computational and Applied Mathematics. - 2018. - No. 3 (15). - P. 61-78.

Khojaev I.K., Hamdamov M.M. Numerical Method for Calculating Axisymmetric Turbulent Jets of Reacting Gases During Diffusion Combustion // J. Adv. Research in Dynamic & Control Systems, Vol. 12, 07-Special Issue, 2020.

Khujaev I.K., Hamdamov M.M. Rasprostranenie osesimmetrichnoy turbulentnoy strui metana v sputnom potoke vozduxa pri gorenii s konechnoy skorostyu. ISSN 1812-3368. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennie nauki. 2021. № 5. DOI: 10.18698/1812-3368-2021-5-89-108

Hamdamov M., Mirzoyev A., Buriev E., Tashpulatov N. Simulation of non-isothermal free turbulent gas jets in the process of energy exchange // E3S Web of Conferences 264, 01017 (2021). https://doi.org/10.1051/e3sconf/202126401017. CONMECHYDRO - 2021.

Downloads

Published

2022-02-28

How to Cite

Hamdamov, M., & Shirinov, Z. (2022). NUMERICAL SIMULATION OF TURBULENT GAS FLOW WITH COMBUSTION REACTIONS. CENTRAL ASIAN JOURNAL OF EDUCATION AND COMPUTER SCIENCES (CAJECS), 1(1), 16–27. Retrieved from https://cajecs.com/index.php/cajecs/article/view/v1i12

Issue

Section

Technical sciences